• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, et al. 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer. Journal of Groundwater Science and Engineering, 7(4): 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
Citation: Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, et al. 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer. Journal of Groundwater Science and Engineering, 7(4): 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008

Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer

doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
  • Publish Date: 2019-12-28
  • In many circumstances involving heat and mass transfer issues, it is considered impractical to measure the input flux and the resulting state distribution in the domain. Therefore, the need to develop techniques to provide solutions for such problems and estimate the inverse mass flux becomes imperative. Adaptive state estimator (ASE) is increasingly becoming a popular inverse estimation technique which resolves inverse problems by incorporating the semi-Markovian concept into a Bayesian estimation technique, thereby developing an inverse input and state estimator consisting of a bank of parallel adaptively weighted Kalman filters. The ASE is particularly designed for a system that encompasses independent unknowns and /or random switching of input and measurement biases. The present study describes the scheme to estimate the groundwater input contaminant flux and its transient distribution in a conjectural two-dimensional aquifer by means of ASE, which in particular is because of its unique ability to efficiently handle the process noise giving an estimation of keeping the relative error range within 10% in 2-dimensional problems. Numerical simulation results show that the proposed estimator presents decent estimation performance for both smoothly and abruptly varying input flux scenarios. Results also show that ASE enjoys a better estimation performance than its competitor, Recursive Least Square Estimator (RLSE) due to its larger error tolerance in greater process noise regimes. ASE’s inherent deficiency of being slower than the RLSE, resulting from the complexity of algorithm, was also noticed. The chosen input scenarios are tested to calculate the effect of input area and both estimators show improved results with an increase in input flux area especially as sensors are moved closer to the assumed input location.
  • 加载中
  • Skaggs H T, Kabala Z J. 1994. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resources Research, 32(9):71-79.
    Assumaning G A, Chang S Y. 2014. State and parameter estimation in three-dimensional subsurface contaminant transport modeling using Kalman Filter coupled with Monte Carlo Sampling. Journal of Environmental Informatics, 24(2): 80-89.
    Ji C C, Tuan P C, Jang H Y. 1997. A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation. International Journal of Heat and Mass Transfer, 40(9): 2081-2096.
    Konikow L F, Goode L F, Hornberger G Z. 1996. A three-dimensional method of characterristics solute-transport model (MOC3D), U S. Geological Survey Water-Resources Investigations Report, 96: 4267.
    Muhammad N M. 2017. Adaptive boundary input heat flux and temperature estimation in a three-dimensional domain. Heat Transfer Research, 48(3):239-261.
    Ruperti N J. 2002. Estimation of the release history of a contaminant source in 2-D groundwater systems. 4th International Conference on Inverse Problems in Engineering, Rio de Janeiro, Brazil.
    Newman M, Hatfield K, Hayworth J, et al. 2005. A hybrid method for inverse characterization of subsurface contaminant flux. Journal of Contaminant Hydrology, 81(1-4): 34-62.
    Jazwinski A H. 1970. Stochastic processes and filtering theory. New York: Academic Press.
    Tuan P C, Ju M C. 2001. Adaptive weighting input estimation algorithm for one dimensional cylindrical inverse heat conduction problems. Proceeding of National Science Council ROCA, 25: 163-171.
    Moose R L, Sistanizadeh M K, Skagfjord G. 1987. Adaptive state estimation for a system with unknown input and measurement bias. IEEE Journal Oceanic Engineering, 12(1): 222-227.
    Wagner B J. 1992. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling. Journal of Hydrology, 135(1-4):275-303.
    WEN Shuang, QI Hong, YU Xiao-Ying, et al. 2018. Realtime estimation of time-dependent imposed heat flux in graded index media by KF-RLSE algorithm. Applied Thermal Engineering, 150:1-10.
    Muhammad N M, Kim K Y, Huang C H, et al. 2010. Groundwater contaminant boundary input flux estimation in a two-dimensional aquifer. Journal of Industrial and Engineering Chemistry, 16(1): 106-114.
    Ijaz U Z, Khambampati A K, Kim M C, et al. 2007. Estimation of time-dependent heat flux and measurement bias in two-dimensional inverse heat conduction problems. International Journal of Heat and Mass Transfer, 50(21-22): 4117-4130.
    Woodbury A, Sudicky E, Ulrych T J, et al. 1998. Three-dimensional plume source reconstruction using minimum relative entropy inversion. Journal of Contamination Hydrology, 32:131-158.
    Howard R A. 1964. System analysis of semi-Markov processes. IEEE Transactions on Military Electronics, 8(2): 114-124.
    Huang C H, Li J X, Kim S. 2008. An inverse problem in estimating the strength of contamination source for groundwater systems. Applied Mathematical Modelling, 32: 417-431.
    Neupauer R M, Borchers B, Wilson J L. 2000. Comparison of inverse methods for reconstructing the release history of a groundwater contamination source. Water Resources Research, 36: 2469-2475.
    Aral M M, Guan J. 1996. Genetic algorithms in search of groundwater pollution sources. Advances in Groundwater Pollution Control and Remediation, 9: 347-369.
    Jha M, Datta B. 2013. Three-dimensional groundwater contamination source identification using adaptive simulated annealing. Journal of Hydrologic Engineering, 18(3): 307-317.
    Sciortino A, Harmon T C, Yeh W W G. 2000. Inverse modeling for locating dense nonaqueous pools in groundwater under steady flow conditions. Water Resources Research, 36(7):1723-1735.
    Liu C, Ball W P. 1999. Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB. Delaware. Water Resources Research, 35(7): 1975-1985.
  • Relative Articles

    [1] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [2] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [3] Zhao-xian Zheng, Ling-xia Liu, Xiao-shun Cui, 2021: Source identification of methane in groundwater in shale gas development areas: A critical review of the state of the art, prospects, and future challenges, Journal of Groundwater Science and Engineering, 9, 245-255.  doi: 10.19637/j.cnki.2305-7068.2021.03.007
    [4] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [5] Hong-wei SONG, Fan XIA, Hai-dong MU, Wei-qiang WANG, Ming-sen SHANG, 2020: Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286.  doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [6] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR, 2020: Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [7] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [8] Jhim Terrazas-Salvatierra, Galo Munoz-Vásquez, Ana Romero-Jaldin, 2020: Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229.  doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [9] ZHONG Hua-ping, WU Yong-xiang, 2020: State of seawater intrusion and its adaptive management countermeasures in Longkou City of China, Journal of Groundwater Science and Engineering, 8, 30-42.  doi: 10.19637/j.cnki.2305-7068.2020.01.004
    [10] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [11] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [12] Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, Hamid Shanawar, Mehmood Waqas, Ansir Muneer Muhammad, Irfan Muhammad, Anjum Lubna, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380.  doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [13] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [14] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [15] Than Zaw, Maung Maung Than, 2017: Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [16] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [17] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [18] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei, 2013: Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
    [19] Zhao-xian Zheng, Xiao-si Su, 2013: Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner, 2013: Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中

Catalog

    Article Metrics

    Article views (589) PDF downloads(176) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return